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Abstract

Self-confirming equilibrium differs from Nash equilibrium in

allowing players to have incorrect beliefs about how their opponents
would play off of the equilibrium path. We provide several examples
of ways that self-confirming and Nash equilibria differ. In games
with "identified deviators ,

" all self -confirming equilibrium
outcomes can be generated by extensive -form correlated equilibria.
In two-player games, self-confirming equilibria with "unitary
beliefs" are Nash.



1. Introduction

Nash equilibriiom and its refinements describe a situation in which (i)

each player's strategy is a best response to his beliefs about the the play

of his opponents, and (ii) each player's beliefs about the opponents' play

are exactly correct. We propose a new equilibrium concept, self -confirming

equilibrium, that weakens condition (ii) by requiring only that players'

beliefs are correct along the equilibrium path of play. Thus, each player

may have incorrect beliefs about how his opponents would play in

contingencies that do not arise when play follows the equilibrium, and

moreover the beliefs of different players may be wrong in different ways.

The concept of self- confirming equilibrium is motivated by the idea

that non-cooperative equilibria should be interpreted as the outcome of a

learning process , in which players revise their beliefs using their

observations of previous play. Suppose that each time the game is played

the players observe the actions chosen by their opponents, (or more

generally, the terminal node of the extensive form) but that players do not

observe the actions the opponents would have played at the information sets

that were not reached along the path of play. Then, if a self- confirming

equilibriiim occurs repeatedly, no player ever observes play that contradicts

his beliefs, so the equilibrium is "self-confirming" in the weak sense of

not being inconsistent with the evidence. By analogy with the literature on

the bandit problem (e.g. Rothschild [1974]) one might expect that a non-Nash

self-confirming equilibrium can be the outcome of plausible learning

processes. This point was made by Fudenberg and Kreps [1988], who gave an

example of a learning process that converges to non-Nash outcome unless the

players engage in a sufficient amount of "experimentation" with actions that



do not maximize the current period's expected payoff. Our notion of

self-confirming equilibrium was developed to capture the implications of

learning when players do little or none of this experimentation.

To illustrate the relationship between Nash equilibrium and self-

confirming equilibrium, note first that in a one-shot simultaneous -move

game, every information set is reached along every path, so that self-

confirming equilibrium reduces to the Nash condition that beliefs are

correct at every information set. Somewhat less obvious is the fact that

self-confirming equilibria must have Nash outcomes in any two-player game,

so long as each player has "unitary beliefs," meaning that each strategy

that the player uses with positive probability is a best response to the

same (possibly incorrect) beliefs about the opponent's off-path play.

Unitary beliefs seem natural if we think of equilibrium as correspon-

ding to the outcome of a learning model with a single player 1 and a single

player 2, etc, as in Fudenberg and Kreps . We were led to consider the

alternative of heterogeneous beliefs — each strategy a player uses with

positive probability may be a best response to a different belief about his

opponents — by our [1990], [1991] study of learning in models where a large

number of individual players of each type are randomly matched with one

another each period. In such models, heterogeneous beliefs can arise

because different individuals have different learning experiences or

different prior beliefs. When heterogeneous beliefs are allowed, the

self-confirming equilibria of two-player game need not be Nash equilibria of

the original game, but rather are Nash equilibria of an extended version of

the game in which players can observe the outcome of certain correlating

devices. Moreover, the self-confirming equilibrium outcomes are a subset

of the outcomes of Forges's [1986] extensive -form correlated equilibria.



This inclusion does not obtain in general n-player games, as shown by

the example of Fudenberg and Kreps. However, it does obtain in any game

which has "identified deviators ,
" meaning that deviations by different

players cannot lead to the same information set. In these games, moreover,

every outcome of a self-confirming equilibrium with unitary beliefs is Nash,

provided that each player's subjective uncertainty corresponds to indepen-

dent randomizations by his opponents. (This independence condition is

difficult to explain informally; it is discussed at length on page 7.)

Since self-confirming equilibrium requires beliefs be correct along the

equilibrium path of play, it is inherently an extensive -form solution

concept, in contrast to Nash equilibrium, which can be defined on the

strategic form of the game. Indeed, two extensive form games with the same

strategic form can have different sets of self-confirming equilibria. This

conclusion runs counter to the argument, recently popularized by Kohlberg

and Mertens [1986] , that the strategic form encodes all strategically

relevant information, and two extensive forms with the same strategic form

will be played in the same way. However, dependence on the extensive form

is natural when equilibrium is interpreted as the result of learning, as the

strategic form does not pin down how much of the opponents' strategies each

player will observe when the game is played. In our view, the contrast

between our approach and that of Kohlberg and Mertens shows that it is

better to specify the process that leads to equilibrium play before

deciding which games are equivalent or which equilibria are most reasonable.

The idea of self-confirming equilibrium with unitary beliefs is

implicit in the work of Fudenberg and Kreps; our contribution here is to

give a formal definition of the concept and explore its properties in

various classes of games. We first noted the way that heterogeneous beliefs



could allow for a form of extensive -form correlation in our [1990] paper on

steady- state learning. Battagalli and Guatoli's [1988] conjectural

equilibrium, and Rubinstein and Wolinsky's [1990] rationalizable

conjectural equilibrium are also motivated by the idea that equilibrium

corresponds to the steady state of a learning model. Their work differs

from ours in considering a more general formulation of the information

players observe about one another's strategies when the game is played and

in restricting attention to unitary beliefs. Kalai and Lehrer's [1991]

concept of a private-beliefs equilibrium assumes -nat beliefs are both

independent and unitary; they extend our observation that such equilibria

have Nash outcomes in multi-stage games by allowing for beliefs that are

only approximately correct on the path of play. Canning's [1990] social

equilibrium is also motivated by the idea that equilibrium corresponds to a

steady state of a learning system; his concept differs in being defined in

terms of the learning process, instead of being a reduced- form notion

defined on the original game.

Although the motivation for self -confirming equilibrium is the idea

that equilibrium is the result of learning, this paper discusses only the

equilibrium concept and not its learning- theoretic foundations. Our [1991]

paper considers the steady states of a system in which a fixed stage game is

played repeatedly by a large population of players who are randomly matched

with one another, and learn about their opponents' strategies by observing

play in their own matches. Individual players remain in the population a

finite number of periods; new players enter to keep the total population

size constant. Entering players believe that they face a steady-state

distribution on the opponents' play, and update their exogenous priors over



the true steady state using Bayes rule. Given their beliefs, players choose

their strategies in each period to maximize their expected present value ; in

particular any "experiments" must optimal even though they may have

short-run costs.

Our [1991] paper shows that if lifetimes are long, then steady states

approximate those of self-confirming equilibria. If in addition players are

very patient, they do enough experimentation that they learn the relevant

aspects of off-path play, and steady states approximate Nash equilibria.

2. The Stage Game

The stage game is an I-player extensive -form game of perfect

recall. The game tree X, with nodes x G X, is finite. The terminal nodes

are z e Z c X. Information sets, denoted by h G H, are disjoint subsets of

X\Z. The information sets where player i has the move are H. c H, and H .
=

H\H. are information sets for other players. The feasible actions at

information set h. G H are denoted A(h.); A. = u, „ A(h.) is the set of
1 11 h.GH. 1

1 1

all feasible actions for player i, and A .= u. . A; are the feasible actions

to player i's opponents.

A pure strategy for the player i, s., is a map from information sets in

H. to actions satisfying s.(h.) G A(h.); S. is the set of all such

strategies. We let s G X = x.
^ S, denote a strategy profile for all

players, and s . G S . = x. . S. . Each player i receives a payoff in the

stage game that depends on the terminal node. Player i's payoff function is

denoted u. : Z -> R; each player knows his own payoff function. Let A(«)

denote the space of probability distributions over a set. Then a mixed

strategy profile is a G x. . A(S.).



Let Z(s.) be the subset of terminal nodes that are reachable when s is
1 i

played. Let H(s.) be the set of all information sets that can be reached if

s. is played.

We will also need to refer to the information sets that are reached

with positive probability under o, denoted H(a) . Notice that if a . is

completely mixed, then H(s.,ct .) = H(s ) , as every information set that is

potentially reachable given s. has positive probability.

In addition to mixed strategies, we define behavior strategies. A

behavior strategy for player i, jr., is a map from information sets in H. to

probability distributions over moves: 7r.(h.) e A(A(h.)), and 11. is the set

of all such strategies. As with pure strategies, tt e n = x. 11., and

TT . e n . = X. . n. . Let pCzItt) be the probability that z is reached under

profile E; define p(x|7r) analogously. (Note that the probability p will

reflect the probability distribution on nature's moves.)

Since the game has perfect recall, each mixed strategy o. induces an

unique equivalent behavior strategy denoted 7r.(«|c7.). In other words,

7r.(h.|a.) is the probability distribution over actions at h. induced by a..

We will suppose that all players know the structure of the extensive

form, and so in particular know the strategy spaces of their opponents. We

have already assumed players know their own payoff function and the

probability distribution on nature's moves, so the only uncertainty each

player faces concerns the strategies his opponents will play. To model this

"strategic uncertainty," we let /i. be a probability measure over 11 ., the

set of other players' behavior strategies. Fix s.. Then the marginal

probability of a terminal node z is

(2.1) p^(z|s^,/i^) "
I

p^(z|s^,7r_^)^^(d7r_^) .



This in turn gives rise to preferences

(2.2) u.(s.,^.) = S „, -p.(z|s. ,/i.)u.(z) .

1

It is important to note that even though the beliefs /i. are over

opponents' behavior strategies, and thus reflect player i's knowledge that

his opponents choose their randomizations independently, the marginal

distribution p(«|s.,/i.) over terminal nodes can involve correlation between

the opponents' play. For example, if players 2 and 3 simultaneously choose

between U and D, player 1 might assign probability 1/4 to 7r-(U) - jr_(U) = 1,

and probability 3/4 to 7r„(U) -= »ro(U) -= 1/2. Even though both profiles in

the support of /i, suppose independent randomization by players 2 and 3, the

marginal distribution on their joint actions is p(U,U) = 7/16 and p(U,D) =

p(D,U) = p(P,D) = 3/16, which is a correlated distribution. This correla-

tion reflects a situation where player 1 believes some unobserved common

factor has helped determine the play of both of his opponents. If, as we

have supposed, the opponents are in fact randomizing independently, we

should expect player 1 to learn this if he obtains sufficiently many

observations. However, if few or no observations are accumulated, the

correlation in the predicted marginal distribution can persist.

Self- Confirming Equilibrium and Consistent Self-Confirming Equilibrium .

One way to define a Nash equilibrium is as a mixed profile o such that

for each s. e support (ct.) there exists beliefs /j. such that

s. maximizes u. (•,!*.), and
1 1 1

/i.({rr . |ff.(h.) = »r.(h. la.))) =1 for all h. e H . .

In other words, each player optimizes given his beliefs, and his beliefs are

a point mass on the true distribution.



One of the goals of this paper is to introduce the notion of a

self-confirming equilibrium, which weakens Nash equilibrium by relaxing the

second requirement above. Instead of requiring that beliefs are correct at

each information set, self-confirming equilibrium requires only that, for

each s. that is played with positive probability, beliefs are confirmed by

the information revealed when s. and a are played, which we take to be

corresponding distribution on terminal nodes p(s ,a .)• This corresponds to

the idea that the terminal node reached is observed at the end of each play

of the game.

The idea that beliefs need only be correct along the path is a natural

consequence of a Bayesian approach to the formation of forecasts we study

below: Bayesian learning should not be expected to lead to correct beliefs

about play at information sets that are never reached.

Definition 1: Profile a is self -confirming if for each s. G support(a.)

there exists beliefs a. such that
1

(i) s. maximizes u.(»,u.), and
1 1 1

(ii) u. {tt .|7r.(h) = 7r.(h|cr.)) = 1 for all s t^ i and h. e H(s.,a .)
' ' '^1 [ -i' j' ^ j^ I j'

J J
^ i' -i'

Condition (ii) requires that player i's beliefs be concentrated on the

subset of n that coincide with the true distribution at information sets

that are reached with positive probability when player i plays s.. His

beliefs about play at other information sets need not be concentrated on a

single behavior strategy, and at these information sets his beliefs can

incorporate correlation of the kind discussed in the last section. We

emphasize that each s. e support (a.) may be confirmed by a different belief



/i. . In the definition of Nash equilibrium, this flexibility is vacuous, as

each /i. must be exactly correct; the flexibility matters once beliefs are

allowed to be wrong. This diversity of beliefs is natural in a learning

model with populations of each type of player: different player i's may have

different beliefs, either due to different priors or to different

observations

.

If the same beliefs u. can be used to rationalize each
1

s. e support(a. ), we will say that the equilibrium has unitary beliefs .

This restriction corresponds to learning models with a single player of each

type. We will occasionally speak of heterogeneous beliefs when we want to

emphasize that beliefs need not be unitary. A self-confirming equilibrium

is independent if for all sets 11. c 11. , u.(x. .11.) = 11. .u.(E.) so that

learning player j's behavior strategy would not change i's beliefs about

Definition 2

:

Profile a is a consistent self-confirming equilibrium if

for each s. e support (cr.) there are beliefs n. such that

(1) s. maximizes u.(«,/i.)i and

(ii') M.f{7r .1 ;r.(h.) = 7r.(h.|CT.))| = 1 for all j ^^ i and h. e H(s.)

In words, self-confirming equilibrium requires that for each s. that

player i gives positive probability, player i correctly forecasts play at

all information sets that will be reached with positive probability under

profile (s.,a .). Consistent self-confirming equilibrium requires further



that player i's beliefs be correct at all information sets that could

possibly be reached when he plays s. under some play of the opponents. This

stronger requirement captures the information player i would obtain in a

learning model if his opponents play each of their strategies sufficiently

often. We call this a "consistent" equilibrium because in this case if both

player i and player j can unilaterally deviate and cause information set h

to be reached, then both players' beliefs about play at h are correct, and

in particular are equal to each other.

Note that in a one -shot simultaneous -move game, all information sets

are on the path of every profile, so the sets H(s.,a .) are all of H, and

condition (ii) requires that beliefs be exactly correct. Hence in these

games, all self -confirming equilibria are Nash. In more general games, the

self-confirming equilibria can be a larger set, as shown by the examples of

the next section.

4. The Characterization of Self-Confirming Equilibria

This section examines the properties of self-confirming equilibria. We

begin with an example of a self -confirming equilibrium that is not

consistent self -confirming. The example has the property that one player

cannot distinguish between deviations by two of his opponents; we show that

in the opposite case of "identified deviators" any self-confirming

equilibrium is consistent self confirming. We then provide several examples

of ways in which consistent self -confirming equilibria can fail to be Nash,

and show that all consistent self -confirming equilibria have outcomes that

can be supported by the extensive -form correlated equilibria defined by

Forges [1986]. Finally, we show that consistent self-confirming equilibria

10



with independent, unitary beliefs have the same outcomes as Nash equilibria.

Example 1. [Fudenberg-Kreps] : In the three player game illustrated in Figure

1, player 1 moves first. If he plays A, player 2 moves next; if he plays D,

player 3 gets the move. If player 2 gets the move, he can either play A,

which ends the game, or play D, which gives the move to player 3. The key

feature of the game is that if player 3 gets the move, he cannot tell

whether player 1 played D, or player 1 played A and player 2 played D.

Fudenberg and Kreps [1988] use this game to show that learning need not

lead to Nash equilibrium even if players are long-lived. Suppose that

player 1 expects player 3 to play R and player 2 expects player 3 to play L.

Given these beliefs, it is optimal for players 1 and 2 to play A^ and A„

.

Moreover, (A^ ,A„) is a self-confirming equilibrium. However, it is not a

Nash equilibrium outcome: Nash equilibriiom requires players 1 and 2 to have

the same (correct) beliefs about player 3's play, and if both have the same

beliefs, at least one of the players must choose D. (If the beliefs assign

probability more than 1/3 to L and 2 plays A, then 1 plays D, while if the

beliefs assign probability more than 1/3 to R and 1 plays A then 2 plays D.)

When this example has been presented in seminars, the following

question has frequently been raised: Shouldn't player 2 revise his beliefs

about player 3 in the direction of 3 playing R when he sees player 1 play A?

And, in the spirit of the literature on the impossibility of players

"agreeing to disagree" (Aumann [1976], Geanakoplos and Polemarchakis

[1982], and so forth) shouldn't players 1 and 2 end up with the same beliefs

about player 3's strategy?

Our response is to note that, while this sort of indirect learning

11



could occur in our model, it need not do. First, the indirect learning

supposes that players know (or have strong beliefs about) one another's

payoffs, which is consistent with our model but is not necessarily the case.

Second, even if player 2 knows player I's payoffs, and hence is able to

infer that player 1 believes player 3 will play R, it is not clear that this

will lead player 2 to revise his own beliefs. It is true that player 2 will

revise his beliefs if he views the discrepancy between his own beliefs and

player I's as due to information that player 1 has received but player 2 has

not, but player 2 might also believe that player 1 has no objective reason

for his beliefs, but has simply made a mistake. The "agreeing to disagree"

literature ensures all differences in beliefs are attributable to objective

information by supposing that the players' beliefs are consistent with

Bayesian updating from a common prior distribution. But when equilibrium is

interpreted as the result of learning, the assumption of a common prior is

inappropriate. Indeed, the question of whether learning leads to Nash

equilibrium can be rephrased as the question of whether learning leads to

conunon posterior beliefs starting from arbitrary priors. (To emphasize this

point, recall that assuming players have a common prior distribution over

one another's strategies is equivalent to assuming that the beliefs

correspond to a correlated equilibrium (Aumann [1987]), and assuming an

independent common prior is equivalent to Nash equilibrium. (Brandenburger

and Dekel [1987]).

While (A.. ,A„) in Example 1 is a self -confirming equilibrium (with

unitary beliefs) it is not a consistent self-confirming equilibrium, as

players 1 and 2 have different beliefs about player 3's play yet player 3's

information set h_ belongs to both H(A..) and H(A-). The reason that this

inconsistency matters is that both player 1 and player 2 can cause h„ to be

12



reached by deviating from the equilibrium path. Thus the game does not have

"observed deviators" in the sense of the following definition.

Definition 3: A game has observed deviators if for all players i, all

strategy profiles s and all deviations s' ^ s., h € H(s' , s .)\H(s) implies

that there is no s' . with h e H(s.,s' .)•-1 1 -1

In words, this definition says that if some deviation from s by player

i leads to a new information set h, then the information set can only be

reached if player i deviates. Games of perfect information satisfy this

condition, as do repeated games with observed actions. More generally, the

condition is satisfied by all "multi-stage games with observed actions,"

meaning that the extensive form can be parsed into "stages" with the

properties that the beginning of each stage corresponds to a proper subgame

(Selten [1975]), and that within each stage all players move simultane-

2
ously. The following result shows that the condition is also satisfied in

all two-player games of interest:

Lemma 1^: Every two-player game of perfect recall has observed deviators.

Proof: Suppose to the contrary that there exists a profile s = (s^ , s„),

and information set h such that h € H(s.. ,s„), but h e H(s^ , s') for some s'

and h G H(s' , s-) for some s' If h e H.. then player 1 cannot

distinguish between s^ and s' , while h e H„ implies that player 2 cannot

distinguish between s„ and s'

.

Theorem 1: In games with observed deviators, self-confirming equilibria are

13



consistent self-confirming.

Proof: The idea of the proof is that a player's beliefs about play at

information sets he cannot cause to be reached do not influence his play.

Since the game has observed deviators , only one player i(h) can cause a

given information set to be reached. So, starting from a self -confirming

equilibrium, we construct new beliefs in which all players have the same
A

beliefs about play at h as player i(h) did in the original equilibrium.

To make this precise, suppose that tr is a self-confirming equilibrium.

Then for each player i and each s. e support (cr.) there is a /i. that

satisfies (i) and (ii) of definition 3.1. We will define new beliefs ^x'.

that coincide with /x. except on H(s.)\ H(s., a .), and assign probability 1

to the true play 7r(h|a .) at information sets in H(s.)\H(s., a .) . To do

this, let Q = H(s.)\ H(s., a .), let II . be the projection of II . onto Q,

and let u. be the marginal distribution u. induces on II . . Let II . be the
1

°
1 -1 -1

- P P
proiection of H . onto H(s.,a .), and let a. be the distribution on II . that
t^ -J -1 1-1 1 -1

assigns probability 1 to 7r.(h.|a.) at each h. e H(s., a .). Finally, set

Q P
p'. = /i ? X /i . .

1 1 1

Since u. satisfies condition (ii) of definition 1, u'. satisfies the
1 1

stronger condition (ii' ) . Condition (ii) also implies that

H(s.,/j.) = H(s.,a .), that is, player i correctly predicts the equilibrium

path of play when he plays s., and it is then clear from the definition of

H'. that H(s., /i'. ) - H(s., n ) as well. Moreover, information sets in

H(s.)/ H(s., n'.) are not reached under (s , a»' ) . but can be reached if some

player j deviates. Since the game has observed deviators, these information

sets cannot be reached if none of player i's opponents deviate, that is, the

information sets are not in H(s'.
, n'.) for any s'. . Hence player i's expected

14



payoff to every action is the same under /x. and /i'. , so s. is a best response

to A*'. ,

1

Corollary : Self-confirming equilibria are consistent self-confirming in all

two-player games of perfect recall.

Even consistent self-confirming equilibria need not be Nash. There are

two reasons for this difference. First, consistent self- confirming

equilibrium allows a player's uncertainty about his opponents' strategies to

be correlated, while Nash equilibrium requires that the beliefs be a point

mass on a behavior strategy profile.

Example 2 [Untested Correlation]: In the game in figure 2, player 1 can

play A, which ends the game, or play L^ , M.. , or R^ , all of which lead to a

simultaneous -move game between players 2 and 3, neither of whom observes

player I's action. In this game, A is a best response to the correlated

di,stribution p(L„, L-) = p(R«, R^) = 1/2. Thus if player I's prior beliefs

are either that 2 and 3 always play L, or that they always play R, then

player I's best response is to play A, and so A is the outcome of a

self- confirming equilibrium.

However, we claim that A is not a best response to any strategy profile

for players 2 and 3. Verifying this is straightforward but tedious: Let p„

and p_ be the probabilities that players 2 and 3, respectively, assign to L„

and L_ . In order for A to be a best response, the following 3 inequalities

must be satisfied:

(4.1) 4[p2P3-(l-P2)(l-P3)] ^ 1. or P2 + P3 ^ V^.

15



(4.2) ^t-P2P3 +(1-P2)<1-P3)1 ^ ! °^ P2 "^ P3 - ^/^' ^"""^

(4.3) P2(^-P3> + (1-P2>P3 ^ V3.

We will show that when constraints (4.1) and (4.2) are satisfied, (4.3)

cannot be. For any p- < 1/2, the left-hand side of (4.3) is minimized when

p_ is as small as possible, that is, for Po(p^) " 3/4 - p„ . The minimized

2
value is 2p. - 3/2 p„ + 3/4, and this expression is minimized over p at

p„ = p. = 3/8. At this point the left-hand side of (4.3) equals

15/36 > 1/3. The case p. > 1/2 is symmetric.

We stress that the correlation in this example need not describe a

situation in which player 1 believes that players 2 and 3 actually correlate

their play. To the contrary, player 1 might be certain that they do not do

so, and that she could learn which (uncorrelated) strategy profile they are

using by giving them the move a single time. These competing explanations

for the correlation — call them "objective" correlation and "subjective"

correlation — cannot be distinguished in a static, reduced- form model of the

kind considered in this paper. However, our [1991] paper on steady- state

learning shows that the non-Nash outcome of example 2 can be the steady

state of a learning process where players are certain that their opponents'

actual play is an uncorrelated behavior profile.

In addition to untested correlation, there is another way that

consistent self-confirming equilibria can fail to be Nash, which arises

because the self-confirming concept allows each s. that player i assigns

positive probability to be a best response to different beliefs. This

16



possibility allows for non-Nash play even in two-player games. The most

immediate consequence of these differing beliefs is a form of

convexification, as in the following example.

Example 3 [Public Randomization]: In the game in Figure 3, player 1 can end

the game by moving L or he can give player 2 the move by choosing R. Player

1 should play L if he believes 2 will play D, and should play R if he

believes 2 will play U. If player 1 plays R with positive probability,

player 2's unique best response is to play U, so there are two Nash

equilibrixom outcomes, (L) and (R,U) . The mixed profile ((1/2 L, 1/2 R) , U)

is a self -confirming equilibrium whose outcome is a convex combination of

the Nash outcomes: Player 1 plays L when he expects player 2 to play D, and

R when he expects 2 to play U, and when he plays L his forecast of D is not

disconfirmed. (Moreover, this equilibrium is clearly independent.)

The next example shows that self-confirming equilibria in two player

games can involve more than convexification over Nash equilibria. The idea

is that by embedding a randomization over equilibria as in Example 3 in the

second stage of a two-stage game, we can induce one player to randomize in

the first stage even though such randomization cannot arise in Nash

equilibrium. Moreover, this randomization may in turn cause the player's

opponent to take an action that would not be a best response without it.

Example A: The extensive form shown in Figure 3 corresponds to a two -stage

game: In the first stage, players 1 and 2 play simultaneously, with

player 1 choosing U or D and player 2 choosing L,M, or R. Before the second

stage, these choices are revealed. In the second stage, only player 2 has a
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move .choosing between R ("Reward") costing both players 0, and P ("Punish")

costing both players 10. The payoffs are additively separable between

periods

.

We claim first that in any Nash equilibrium of this game, player 1 must

play a pure strategy and player 2 must play M in stage 1 with probability

zero. Let q(U) be the conditional probability that player 2 plays R given

that player 1 played U, and let q(D) be the probability of R conditional on

D. Notice that player I's payoffs depend only on whether 2 chooses R or P.

If player 1 mixes between U and D, he must have the same expected payoff

from each, so in order for player 1 to randomize, it must be that 3 + lOq(U)

= 2 + lOq(D), or q(D) - q(U) = 1/10. But if both U and D have positive

probability, then maximization by player 2 implies that he plays R, so q(U)

= q(D) = 1, a contradiction. We conclude that player 1 must play a pure

strategy, and consequently player 2 cannot play M.

Next, we consider correlated equilibrium, that is, a probability

distribution over strategies with the property that for each player i and

each s. with positive probability, playing s. is a best response to the

distribution of s . conditional on s.. If 1 plays U with probability 1, 2

must play L, while if he plays D with probability 1, 2 must play R. So in

this case the probability of M is zero. On the other hand, if both U and D

have positive probability and player 2 plays M with probability 1, then

player 1 correctly anticipates that player 2 will respond to both U and D

with M. In order for player 1 to play U in the first period, he must expect

to be punished with positive probability. In other words, the outcome

(U,M,P) must have positive probability. But this is impossible. If (U,M)

has positive probability, player 2 cannot follow (U,M) with a positive

probability of P. Thus, player 2 cannot play M with probability one, and
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the probability of M is bounded away from one in all correlated equilibria

because the set of correlated equilibria is closed.

However, player 2 can play M with probability 1 in a self-confirming

equilibrium: Let player I's strategy be a^ = (1/2 U, 1/2 D) , and let player

2's strategy ct_ be "play M in the first stage and play R in the second stage

regardless of the first-period outcome." Player 2's strategy is a best

response to the strategy a^ that player 1 is actually playing, and

U e support(£7^) is a best response to a„ . The strategy D e support(cr^) is

not a best response to a„ , but it is a best response to the belief that

player 2 will play R if player 1 plays D and P if player 1 plays U; and when

player 1 plays D his forecast of what would have happened if he had played U

is not disconfirmed.

Although consistent self-confirming equilibria need not be Nash

equilibria or even correlated equilibria, they are a special case of another

equilibrium concept from the literature, namely the extensive -form

correlated equilibria defined by Forges [1986]. These equilibria, which are

only defined for games whose information sets are ordered by precedence

(the usual case) , are the Nash equilibria of an expanded game where an

"autonomous signalling device" is added at every information set, with the

joint distribution over signals independent of the actual play of the game

and common knowledge to the players , and the player on move at each

information set h is told the outcome of the corresponding device before he

3
chooses his move. Extensive -form correlated equilibrium includes Aumann's

[1974] correlated equilibrium as the special case where the signals at

information sets after stage 1 have one -point distributions and so contain

no new information. The possibility of signals at later dates allows the
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construction of extensive -form correlated equilibria that are not correlated

equilibria, as in Myerson [1986]. Another example is based on the self-

confirming equilibrium we constructed in Example 4.

Example 4 revisited : We construct an extensive -form correlated equilibrium

with the same distribution over outcomes as the self-confirming equilibrium

in Example 4. The first- stage private signals describe play in that stage:

There is a probability 1/2 of the signals (U.M) and (D,M) in stage 1. The

strategies in stage 1 are to play the recommended action. The second- stage

public signal takes on two values, U and D. The strategy for player 2 in

stage 2 is to play P if player 1 played U and the second signal is D, and R

otherwise. The second-stage public signal is perfectly correlated with

player I's first-stage private signal. Let us check that it is a Nash

equilibriiam for the players to use the strategies their signals recommend:

Since player I's signal reveals whether or not he will be punished for

playing U, player 1 finds it optimal to obey his signal. Player 2's first

signal is uninformative about player I's stage 1 play, and so player 2

expects player 1 to randomize 1/2-1/2 in the first stage and thus plays M.

Player 2 cannot improve on the recommended strategies in the second stage

because he is only told to punish U when player I's first signal was to play

D, and if player 1 obeys his signal this will not occur. The role of the

second signal is to tell player 2 when to punish player 1 without revealing

player I's play at the beginning of the first stage; if player I's play was

revealed at this point this would remove player 2's incentive to play M.

Note that while the extensive -form correlated equilibrium and the self-

confirming equilibrium have the same distribution over outcomes, they

involve different distributions over strategies: In a self -confirming
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equilibrium, if player 1 mixes between U and D, then player 2 must respond

to both U and D with R; player 1 sometimes plays D because he incorrectly

believes 2 will respond to U with P. In an extensive -form correlated

equilibrium, each player's predictions about his opponents' strategies are

on average correct, so if player 1 sometimes believes that player 2 responds

to U with P then player 2 must assign positive probability to a strategy

that does so.

Theorem 2:

For each consistent self-confirming equilibrium of a game whose

information sets are ordered by precedence, there is an equivalent

extensive -form correlated equilibrium, that is, one with the same distribution

over terminal nodes.

Proof: Let a be consistent self- confirming, and for each s. e support a.,

let ;i.(s.) be beliefs satisfying conditions (i) and (ii) of definition 1.

We now expand the game by adding an initial randomizing device whose

realization is partially revealed as private information at various

information sets. A realization of this device is an I -vector with the i

component a pair (s . .n .) with s. e S. and jt . = (tt.). . ell .. The s.
'^ *^ 1 -1 11 -1 j J^^i -1 1

follow the probability distribution a (and in particular s. and s. are

independent for i'^j ) . The distribution of it . conditional on s is /i.(s.).

Intuitively, profile tt . is the way player i expects to be "punished" if he

deviates from strategy s.

.

Initially each player i is told s.. Subsequent revelations also depend

upon s. At information sets on the path of s, he H(s), no additional

information is revealed. At information sets that can be reached only if
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two or more players deviate from s no information is revealed. If

h. e H(s'. ,s .)\H(s), so h. is reached by player i's deviation, and J5^i, then

player j is told 7r.(h).

In a consistent self-confirming equilibrium, if h. e H(s'. ,s .)\H(s) and

h. e H(s,' ,s , )\H(s), then h. e H(s.) n H(s, ). It follows that 7r^(h.) =
J k -k ^

J 1 k J J

»r.(h.) for j 1^ i,k, so only one distinct signal is received by j .

Now consider the strategy profile s for the expanded game in which each

player j plays s. except at information sets (in the expanded game) where

the signal 7r.(h.) is received. At such information sets j plays according

to 7r^(h.).
J J

By construction, s induces the same distribution over terminal nodes as

a does. If player i's opponents follow s, player i will never receive an

additional message, so player i is willing to play tt. (h.) at the

probability-zero information sets where player j deviates and i is told

7r-:(h,). Moreover, given the initial message s., opponents' play is drawn

from /i.(s.), and s. is a best response to /i.(s.) from condition (i) in the

definition of self-confirming equilibrium. Hence s is a Nash equilibrium of

the expanded game

.

*

Corollary : In games with identified deviators , every self -confirming

equilibrium outcome is the outcome of an extensive form correlated

equilibrium.

Remark : Note that not all outcomes of extensive -form correlated equilibria

are the outcomes of consistent self-confirming equilibria. In particular,

because self- confirming equilibria supposes that players choose their

actions independently, the equilibrium path of play must be uncorrelated, so
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not even every correlated equilibrium outcome can be attained. This

suggests that it might be possible to find an interesting and tighter

characterization of consistent self- confirming equilibria; we have not been

able to do so.

So far we have seen three ways in which self- confirming equilibria can

fail to be Nash. First, two players can have inconsistent beliefs about the

play of a third, as in example 1. Second, a player's subjective uncertainty

about his opponents' play may induce a correlated distribution on their

actions, even though he knows that their actual play is uncorrelated; this

was the case in example 2. Finally, the fact that each player can have

heterogeneous beliefs — that is, different beliefs may rationalize each

s. e support(a.) - introduces a kind of extensive -form correlation. Theorem

1 showed that in games with identified deviators , self-confirming equilibria

are consistent, thus precluding the kind of non-Nash situation in example 1.

The next theorem shows that the combination of off-path correlation and

heterogeneous beliefs encompass all other ways that self-confirming

equilibria can fail to be Nash.

Theorem 3

:

Every consistent self- confirming equilibrium with independent,

unitary beliefs is equivalent to a Nash equilibrium.

Proof: Fix a consistent self-confirming equilibrium a with independent,

unitary beliefs. Thus for each player i, there is a /x. such that conditions

(i) and (ii' ) of definition 1 are satisfied for all s. e support(/j. ) , and

/I, is a product measure on II . .

We will construct a new strategy profile a' by constructing its

equivalent behavior strategy profile tt' . The idea is simply to change the
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play of all players j 7^ i to that given by player i's beliefs at all the

information sets that can be reached if i unilaterally deviates from a. The

unitary beliefs condition implies that "player i's beliefs" are a single

object; the requirement that the equilibrium is consistent ensures that this

process is well-defined, as if deviations by two distinct players can lead

to the same information set, then their beliefs at that information set are

identical. Finally, the condition of independence says that player i's

beliefs n. correspond to the behavior strategy profile tt' . .

To explicitly define r' requires some notation.

H^ =
[ U H(s' a .)l\H(a)
'- j^i,s'. ^ -^ -•

Let H =
I

U H(s' , a .)|\H(a) be the set of information sets that can be

J

reached if exactly one player j 5^ i deviates from a, and let

A .

H = H \(H u H(a)) be the information sets that can only be reached if

player i or at least two other players deviate. Let H = U H be all of the

i

information sets that can be reached if exactly one player deviates.
A .

For all players i, let 7r.'(h.) = 'n.ChAo.) at all h. 6 H. \ H"' , and let

7r'.(h.) = 7r.(h.|u.) at all h. such that for some player i;^ i and some

s'. , h. e H(s'. , o .) .

1 J 1 -1

To verify that this construction is well-defined, we note first that if

A .

h. e H. n H-^ then there must be some player i t* i and some s'. , such that

h. e H(s' a .). Thus the algorithm above specifies at least one value for
J 1 -1 ^ '^

tt'. at each h. . Next we check that it assigns only one value to tt'. at each

h.. If there two players i and k and strategies s' s' such that h. e
J

i- ./ ^ i' k J

H(s'. , a .) and h. € H(s,' , a ,), then h. e H(cr.) n H(a, ) . Because the1-1 J k -k J 1 k

equilibriiam is consistent and unitary, 7r.(h.|u.) - jr.(h.|u, ) — jr.(h.) -

tt'. (h.), so tt'. is well defined. Finally we check that profile tt' is a Nash
J J J

equilibrium. This verification has two steps. First, we claim that the
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original behavior strategy n. is a best response to the transformed profile

n' . . Note first that for all j ^ i, tt'. (h.) = »r.(h.|/j.) at every information
-1 J J J j' 1

'

set that can be reached if all players but i follow profile a; this implies

that »r'. (h.) = jr.(h.|u.) at every information set that can be reached if all

players but i follow n' . Next recall that player i's expected payoff to any

action is unaffected by changes in his beliefs at information sets that

cannot be reached if no other player deviates, and finally use the assump-

tion that of independent beliefs to conclude that player i's payoff to each

strategy s'. under beliefs n. can be computed using the product of the

corresponding marginal distributions 7r.(h.|/x.)- It then follows that player

i's expected payoff to each s'. is the same when he knows the opponents'

strategies are tt' . as when his beliefs are ^. , so that n. is a best response

to tt' . . To complete the proof, we note that n. and tt'. differ only at

information sets that cannot be reached unless some player j ^ i deviates

from n . , so that n'. is a best response to tt' . .

J 1 -1

Corollary: In two-player games, every self-confirming equilibrium with

4
unitary beliefs is Nash.

5 . Generalizations and Extensions

Self-confirming equilibrium describes a situation in which players know

their own payoff functions, the distribution over nature's moves, and the

strategy spaces of their opponents; the only uncertainty players have is

about which strategies their opponents will play. Moreover, the assumption

that player's beliefs are correct along the path of play implicitly supposes

that players observe the terminal node of the game at the end of each play.
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These informational assumptions are what underlie our results relating

self-confirming equilibrium to standard solution concepts, but in some

cases, these informational assumptions are too strong. Thus it is of some

interest to consider how the assumptions might be relaxed.

Battagali and Guatoli [1988] and Rubinstein and Wolinsky [1990] replace

our assumption that players observe the terminal node of the game with a

more general formulation of what the players observe when the game is

played. In our view these observations should not be more informative than

the terminal node of the game, and should at least allow each player to

compute his own payoff. (In these models, where each player i observes

signal g.(s) when the profile s is played, this constraint would require

player i's utility function u. to be measurable with respect to g..) It

would be interesting to see a characterization of self -confirming

equilibrium for the case in which each player's end-of -stage information is

precisely his own payoff; the key would be finding a tractable description

of how much infoirmation the payoffs convey. Another interesting case is

that of games of incomplete information, with the assumption that each

player observes the entire sequence of play and his own type, but not the

types of his opponents. We conjecture that if each player's payoff function

does not depend on his opponents' types, the set of self-confirming

equilibria is the same whether or not the opponents' types are observed at

the end of each round.

The other informational ass\imptions of self -confirming equilibrium can

be relaxed as well. It is easy to generalize self-confirming equilibrium to

allow for players to not know the distribution of nature's moves; see our

[1990] working paper for the details. Allowing for the possibility that

players do not know the extensive -form structure of the game is more
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difficult. One issue is that, when the extensive form is unknown, players

may believe that some opponents can condition their play information the

opponents cannot in fact possess. Also, in some formulations of the

players' inference processes, players may become convinced that their

opponents' play is influenced by the actions the player means to take at

information sets that are in fact not reached. Fudenberg and Kreps [1991]

discuss some of these problems, but are unable to provide a satisfactory

resolution of them.
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Footnotes

We thank Robert Aumann for convincing us of the importance of this kind of

subjective correlation.

' r

2
See Fudenberg and Tirole [1991] for a more detailed explanation of

multi-stage games; we introduced the definition in Fudenberg and Levine

[1983] . Note that the extensive form in example 2 below is not a

multi-stage game with observed actions, but is a game with observed

deviators . Moreover, splitting player I's information into two consecutive

choices, the first one being A or -A, yields a multi-stage game with

observed actions that has the same reduced normal form and the same set of

self -confirming equilibria. This emphasizes that from the viewpoint of self

confirming equilibria, identified deviators is the more fundamental

property.

3
Forges shows, in the spirit of the revelation principle, that it suffices

to work with a smaller set of signalling devices. She also defines

"communications equilibria," which allow the players to send messages in the

course of play that influence subsequent signals.

4
This is proved directly in Fudenberg and Kreps [1991]
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